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Abstract: Due to the particularity of the jacket structure of offshore platforms and the complexity
of the marine environment, there have been few effective localization and autonomous control
methods for underwater robots that are designed for cleaning tasks. To improve this situation,
a fusion bat algorithm (BA) online optimized fuzzy control method using vision localization was
developed based on the constraints of the underwater operational environment. Vision localization
was achieved based on images from a catadioptric panoramic imaging system. The features of the
pipe edge and the boundary of the area covered by biofouling were obtained by image processing and
feature extraction. The feature point chosen as the “highest” point of the boundary was calculated
by projection transformation to generate the reference path. The specialized fuzzy controller was
designed to drive the robot to track the reference path, and an improved bat algorithm with dynamic
inertia weight and differential evolution method was developed to optimize the scale factors of
the fuzzy controller online. The control method was simulated and further implemented on an
underwater pipe-cleaning robot (UPCR), and the results indicate its rationality and validity.
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1. Introduction

Offshore platforms play an important role in marine resource exploitation, and jackets made of
steel pipes are essential structural supports for oil rigs. As barnacles, algae, and other forms of marine
life always adhere to their surface, these pipes need periodical cleaning to prevent load increase and
corrosion [1,2]. Until now, most of these cleaning tasks have been accomplished manually, which is
of low efficiency and high cost, and presenting potential safety threats to the divers. Therefore, it is
essential to replace manual labor by underwater robots.

In recent years, climbing robots have been developed for industrial applications, especially in
the area of cleaning underwater structures [3,4]. These robots utilize propulsion force adhesion [5–8],
magnetic force adhesion [9,10], and clamping [11] to achieve stable locomotion and withstand the
counterforce brought on by cleaning operations. All of them, however, focused only on locomotion,
adaptation, or the cleaning method, which are the basic functions of climbing robots used for cleaning.
As these underwater robots may work several to over twenty hours a day and operators can only
concentrate effectively for 30–60 min before their driving ability declines [12], automation is urgently
required not only to relieve the stress of operators but also to improve the operational efficiency.

Many researches have paid attention to localization, navigation, and motion control of climbing
robots to achieve automation [13]. MagneBike, also moving on the pipe, uses a localization strategy
based on 3D scan registration and 3D odometry, and transforms the path from 3D space into 2D
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space by projecting movements into local surface planes, allowing for 2D trajectory tracking [14,15].
In addition, multiple methods and devices have been utilized to achieve stable motion and autonomous
control of climbing robots, including computer vision [12,16,17] or structural light-based computer
vision [18–20], 3D perception sources [21], dead reckoning [22], and external guidance [23]. As the
methods above were commonly developed considering the constraints of a particular working
environment, their performance may decrease if applied to other fields, especially under water.
Meanwhile, there have been few effective localization and control methods for underwater cleaning
robots due to the complexity of the marine environment.

3D localization is an indispensable step towards the implementation of a semiautonomous or
autonomous control. However, according to underwater environment specifications [9], an accurate
global localization is either hard to achieve or inadequate for cleaning tasks. Thus, we propose
a compromised method composed of rough global localization and accurate local localization,
which, respectively, helps operators locate approximately the underwater pipe-cleaning robot (UPCR)
and provides reference paths and movement errors for the control method.

The global localization of a UPCR was demonstrated in our previous work [24]. Based on the
transfer matrix between the global coordinate and the UPCR coordinate, the orientation error between
the axis of the pipe and the UPCR, accelerometer measurements, and the inclination of the pipe were
fused to calculate the relative orientation between the pipe and the UPCR. Then, combined with the
liquid level transmitter, the global localization of the UPCR was obtained.

This paper focuses on the local localization and autonomous control of the UPCR. As the boundary
of the area covered by biofouling is always irregular, the “highest” point on the boundary along
the direction of the pipe’s axis was chosen as the feature point, and the line on the pipe across the
point that was vertical to the axis of the pipe was defined as the reference path, as shown in Figure 1.
During local localization, therefore, the pipe edge and the biofouling boundary in the image are first
recognized. The orientation error of the UPCR is calculated based on the inclination of the pipe’s edge.
Then, according to the position of the boundary and projection transformation rules, the coordinates
of the real boundary in the base coordinate are obtained. Finally, the feature point and the reference
path are determined to calculate the movement errors of the UPCR. These movement errors are inputs
for the designed fuzzy controller, which turns the UPCR toward the reference path. A fusion bat
algorithm (BA) with dynamic inertia factor and differential evolution method is also used to improve
the performance of the fuzzy controller.
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Figure 1. Schematic diagram of the feature point and the reference path.

This paper is organized as follows. Section 2 provides a concise introduction of the UPCR prototype
and its operational mode, and the local localization method based on a catadioptric panoramic image.
Section 3 describes a novel fuzzy controller optimized by the fusion bat algorithm. Sections 4 and 5
verify the proposed controller by simulation and experiment, respectively. Finally, conclusions are
given in Section 6.
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2. Catadioptric Panoramic Image-Based Vision Localization

2.1. Prototype Description

A UPCR is a wheeled climbing robot designed to clean biofouling covered on the jacket of
offshore platforms. Equipped with magnetic wheels and a self-adaption mechanism, a UPCR can
move steadily on the pipe, while stripping the biofouling with a cavitation water jet [9,25]. In order to
observe the UPCR’s surrounding environment during operation, a catadioptric panoramic imaging
system composed of a camera and a mirror was designed to acquire images for local localization,
as shown in Figure 2. The camera was upward integrated in the body of the UPCR and obtained the
panoramic image of the robot from the mirror. An Aviterich D5I22 webcam module (Shenzhen ARTON
Tech. Cor., Ltd., Guangdong, China) with 1920 × 1080 pixel resolution and frame rate of 20 fps was
chosen due to its compact size (38 × 38 × 45 mm3), light weight (0.08 kg), and low price (75 dollars).
Based on this panoramic image, feature extraction and projection transformation were successively
operated. Then, the reference path was generated and errors between the UPCR and reference path
were calculated.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 16 

2. Catadioptric Panoramic Image-Based Vision Localization 

2.1. Prototype Description 

A UPCR is a wheeled climbing robot designed to clean biofouling covered on the jacket of 
offshore platforms. Equipped with magnetic wheels and a self-adaption mechanism, a UPCR can 
move steadily on the pipe, while stripping the biofouling with a cavitation water jet [9,25]. In order 
to observe the UPCR’s surrounding environment during operation, a catadioptric panoramic 
imaging system composed of a camera and a mirror was designed to acquire images for local 
localization, as shown in Figure 2. The camera was upward integrated in the body of the UPCR and 
obtained the panoramic image of the robot from the mirror. An Aviterich D5I22 webcam module 
(Shenzhen ARTON Tech. Cor., Ltd, Guangdong, China) with 1920 × 1080 pixel resolution and frame 
rate of 20 fps was chosen due to its compact size (38 × 38 × 45 mm3), light weight (0.08 kg), and low 
price (75 dollars). Based on this panoramic image, feature extraction and projection transformation 
were successively operated. Then, the reference path was generated and errors between the UPCR 
and reference path were calculated. 

 
Figure 2. Overview of the underwater pipe-cleaning robot (UPCR). Left is the UPCR prototype. Right 
is the front view, which shows the structure of the catadioptric panoramic imaging system and its 
position relative to the biofouling during cleaning operations. 

It is worth noting that the UPCR moves circumferentially and downward gradually to ensure 
that all the biofouling in its path is cleaned up; therefore, the highest point of the biofouling is chosen 
as the reference, as described in Section 1. Meanwhile, in order to avoid cable tangling around the 
pipe, the robot moves backward and forward circumferentially. Since the diameter of each pipe is 
uniform, the motion of the UPCR on the pipe can be equivalent to the motion on a rectangular plane. 
The operational trajectory of UPCR is shown in Figure 3. 

 
Figure 3. Operational trajectory of the UPCR. dp is the distance of adjacent circles and also the 
effective cleaning scale of the cavitation water jet. 

Figure 2. Overview of the underwater pipe-cleaning robot (UPCR). Left is the UPCR prototype. Right is
the front view, which shows the structure of the catadioptric panoramic imaging system and its position
relative to the biofouling during cleaning operations.

It is worth noting that the UPCR moves circumferentially and downward gradually to ensure
that all the biofouling in its path is cleaned up; therefore, the highest point of the biofouling is chosen
as the reference, as described in Section 1. Meanwhile, in order to avoid cable tangling around the
pipe, the robot moves backward and forward circumferentially. Since the diameter of each pipe is
uniform, the motion of the UPCR on the pipe can be equivalent to the motion on a rectangular plane.
The operational trajectory of UPCR is shown in Figure 3.
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2.2. Feature Extraction

The process of the method used to obtain the features of the pipe edge and the biofouling boundary
in the field is shown in Figure 4. Equipped with a wide-angle lens, the camera produces images
with barrel distortion, which is first corrected based on the internal and external parameters of the
camera. Median filter, a nonlinear filtering method, is simultaneously applied as it can overcome
the blurriness generated by the linear filtering method while maintaining and enhancing the edge
details [26]. Then, two regions of interest, namely the edge of the pipe and the boundary of the
biofouling, are chosen to reduce unnecessary calculation.
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Figure 4. Process of the feature extraction.

With respect to Region A, threshold segmentation (TS) and an edge recognition method with
canny operator were applied to extract the pipe edge [27]. Considering that the edge may not be
a straight line as the pipe is not smooth, a probabilistic Hough transform (PHT) was performed to
generate lines from the pipe edge, which can be formulated as follows:

y = kix + bi i = 1, 2, . . . , n (1)

Thus, the feature line of the pipe edge can be computed using Equation (2).

y =

∑
ki

n
x +

∑
bi

n
i = 1, 2, . . . , n (2)

As for Region B, it was first overlaid by a preprocessed image to eliminate the disturbance of the
robot body. Since the relative position of the robot body and the panoramic image system is constant,
the preprocessed image is suitable for any situation. Second, the color-to-grey method (CtoG) and
threshold segmentation (TS) were used to obtain a binary image. Third, a closed operation, combining
dilation and erosion, was then applied to fill the holes that were originally occupied with the biofouling
and connect with each other. Fourth, area threshold segmentation was performed to remove the small
blobs that were recognized as noise. Finally, an edge recognition method with canny operator was
used to extract the boundary of the area covered by biofouling.

2.3. Projection Transformation Rules

The purpose of projection transformation is to obtain the real position of the biofouling boundary
based on the image features. Considering that the UPCR is in a random orientation, two-pixel
coordinate systems named xoy and x’oy’ were defined in the captured image, as shown in Figure 5a.
Their origin coincided with the optical center of the camera. Axis oy and axis ox’ are parallel to the
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moving direction of the UPCR and the axis of the pipe, respectively. α is the rotation angle from xoy to
x’oy’, and can be calculated based on Equation (3) as follows:

α = arctan
n∑
ki

i = 1, 2, . . . , n (3)
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According to the feature of Region B, points at the boundary of the area covered by biofouling can
be described as Pi(xi,yi) in xoy. Their coordinates change to P’i(xi’,yi’) in x’oy’, which can be calculated
by Equation (4): {

xi
′ = xi cos(−α) − yi sin(−α)

yi
′ = xi sin(−α) + yi cos(−α)

(4)

The camera imaging model is presented in Figure 5b. Ocxbybzb is the base coordinate system and
xpopyp is the image coordinate system on the image plane. Oc is the equivalent optical center, which is
symmetric with the optical center of the camera about the mirror. Ocxb, opxp, and ox’ (in Figure 5a)
have the same direction, as well as Ocyb, opyp, and oy’. Then, Ppi(xpi,ypi) in xpopyp corresponding to
P’i(xi’,yi’) is given as follows: {

xpi = K·xi
′

ypi = K·yi
′

(5)

where K is the scaling factor of coordinate transformation between x’oy’ and xpopyp. It is constant and
can be measured in advance by the following method.
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One of the points at the pipe edge is first chosen as Q(0,yQ’) in x’oy’ (Figure 5a), and Qb

is the corresponding point of Q on the pipe (Figure 5b). Thus, OcQb and the pipe are tangent.
Then, the corresponding point of Q in xpopyp defined Qp(0,yQp) can be calculated as follows:

yQp = −
f
t
·d (6)

where f is the focal length and d is the distance between Oc and the pipe along axis Ocyb, which is
given as follows:

d = dis · cosα (7)

where dis is the distance between the camera and the center of the UPCR, as shown in Figure 5a. t is a
temp parameter that can be calculated based on geometric similarity as follows:

√
t2 + d2

L− t
=

d
R

(8)

where R is the radius of the pipe and L is the distance between Oc and the pipe along axis Oczb.
Thus, K is given as Equation (9):

K =
yQp

yQ′
(9)

As equations of the line OcPbi and the surface of the pipe can be defined as Equations (10) and
(11), respectively, the coordinates of points at the boundary of the area covered by biofouling on the
pipe named Pbi(xbi,ybi,zbi) can be calculated based on Equations (4), (5), (10), and (11):

xbi
xpi

=
ybi

ypi
=

zbi
− f

(10)

(zbi + L)2 + (ybi + d)2 = R2 (11)

2.4. Deviation Calculation

The point that has the smallest xbi is chosen as the feature point according to Figure 1. Then, the
reference path can be defined as follows and as shown in Figure 5a:{

(zb + L)2 + (yb + d)2 = R2

x = xbmin
(12)

where xbmin is equal to the minimum value of xbi.
Considering that the purpose of the robot is to clean the pipe, it is better to have the cleaning

equipment follow the reference path. As the coordinate of the cleaning equipment is C(xcr, ycr) in the
robot coordinate system xroyr with oyr towards the front of the UPCR and oxr towards the right of the
UPCR, the orientation error eori and the position error epos of the UPCR can be given as Equation (13):

eori = α
epos = xbmin − (xcr cosα− ycr sinα)

(13)

3. Fusion Bat Algorithm-Optimized Fuzzy Controller

The UPCR has three actuators situated in the front wheel, the back wheel, and the turning
mechanism. Based on the kinematic model of the robot [25], the number of active degrees of freedom
(DOFs) is two as movement of the back wheel is constrained by the front wheel and the turning
mechanism. Meanwhile, because the velocity of the front wheel is always slow and does not affect the
trajectory to follow the reference path, it is preset and the angle of the turning mechanism is determined
as the control output.
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The application of the UPCR has two major characteristics—on the one hand, the boundary of sea
creatures is not a smooth curve and is often in a stepped shape, which makes the reference line discrete
and unpredictable; on the other hand, the surface of the steel structure is rugged due to the presence of
residual sea creatures and welding seams, causing the UPCR to bump over them, which in turn leads
to dramatic shaking in the panoramic image. Thus, the fuzzy controller was chosen as it is less complex
in its implementation and inherently robust to noise and parameter uncertainties [28,29], and a fusion
bat algorithm was applied to optimize the performance of the fuzzy controller. The diagram of the
control flow is shown in Figure 6.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 16 

the trajectory to follow the reference path, it is preset and the angle of the turning mechanism is 
determined as the control output. 

The application of the UPCR has two major characteristics—on the one hand, the boundary of 
sea creatures is not a smooth curve and is often in a stepped shape, which makes the reference line 
discrete and unpredictable; on the other hand, the surface of the steel structure is rugged due to the 
presence of residual sea creatures and welding seams, causing the UPCR to bump over them, which 
in turn leads to dramatic shaking in the panoramic image. Thus, the fuzzy controller was chosen as 
it is less complex in its implementation and inherently robust to noise and parameter uncertainties 
[28,29], and a fusion bat algorithm was applied to optimize the performance of the fuzzy controller. 
The diagram of the control flow is shown in Figure 6. 

 
Figure 6. Schematic diagram of the fuzzy controller with fusion bat algorithm (BA). 

3.1. Fuzzy Controller Design 

The inputs of the fuzzy controller were chosen as epos and eori, while the output was chosen as the 
turning angle αt. Their domains of discourse were all [–6, 6], and the fuzzy sets selected for them 
were named Negative-Big (NB), Negative-Medium (NM), Negative-Small (NS), Zero (ZE), Positive-
Small (PS), Positive-Medium (PM), and Positive-Big (PB). The membership functions for the selected 
fuzzy sets are shown in Figure 7. 

 
(a) 

 
(b) 

Figure 7. Membership functions of the fuzzy controller: (a) Inputs, (b) Output. 

Triangular membership functions were adopted as they are the piecewise linear functions 
proven to be efficient due to their computational simplicity [30]. The fuzzy rules for path tracking 
were generated by the experiences of manual control, as shown in Table 1. The max-min inference 
method and the Mamdani method were used in the process of fuzzy inference, and a centroid 

Figure 6. Schematic diagram of the fuzzy controller with fusion bat algorithm (BA).

3.1. Fuzzy Controller Design

The inputs of the fuzzy controller were chosen as epos and eori, while the output was chosen as the
turning angle αt. Their domains of discourse were all [–6, 6], and the fuzzy sets selected for them were
named Negative-Big (NB), Negative-Medium (NM), Negative-Small (NS), Zero (ZE), Positive-Small
(PS), Positive-Medium (PM), and Positive-Big (PB). The membership functions for the selected fuzzy
sets are shown in Figure 7.
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Triangular membership functions were adopted as they are the piecewise linear functions proven
to be efficient due to their computational simplicity [30]. The fuzzy rules for path tracking were
generated by the experiences of manual control, as shown in Table 1. The max-min inference method
and the Mamdani method were used in the process of fuzzy inference, and a centroid defuzzifier was
applied to obtain the actual turning angle, which was constrained in the range of [−25◦, 25◦].

Table 1. Fuzzy rules of the fuzzy controller for path tracking.

eori

αt epos
NB NM NS ZO PS PM PB

NB ZO NS NM NB NB NB NB

NM ZO ZO NS NM NM NB NB

NS PS ZO ZO NS NM NM NB

ZO PM PS PS ZO NS NS NM

PS PB PM PM PS ZO ZO NS

PM PB PB PM PM PS ZO ZO

PB PB PB PB PB PM PS ZO

3.2. Bat Algorithm Optimization

In order to ensure the fuzzy controller’s good performance, scale factors of the inputs and the
output must be properly determined. However, fixed scale factors are not suitable for different
deviations, and therefore an online optimization method is required. Many algorithms can be used to
optimize parameters, such as the simplex method, a genetic algorithm (GA), the simulated annealing
method (SAM), particle swarm optimization (PSO), a bat algorithm (BA), etc. Considering that online
optimization requires the high efficiency of the optimization algorithm, BA was selected to optimize
the scale factors.

A BA is a nature-inspired algorithm developed by Yang in 2012, which was formulated based
on the behavior of bats finding their prey [31]. In this algorithm, each “bat” represents one solution
of the optimization problem, which is a set of the three scale factors (i.e., Kpos, Kori, and Kt) in this
paper. A certain number of bats are applied to constitute a swarm moving around the search space
and searching for the best solution. In order to evaluate the quality of solutions, a fitness function is
required. In this paper, integral time absolute error (ITAE) was used, and the fitness function based on
epos and eori is formulated as follows:

W = ω1

∫ 5

0

∣∣∣epos
∣∣∣tdt +ω2

∫ 5

0
|eori|tdt (14)

where ω1 and ω2 are weight coefficients. As biofouling can be stripped from the pipe only when the
cleaning equipment arrives, it is better to eliminate the position error as a priority. Therefore, ω1 and
ω2 are set as 0.7 and 0.3, respectively.

A BA provides a quick convergence by switching between exploration and exploitation, but it may
lead to stagnation or premature convergence if it switches to exploitation too early [32]. Even though
BA parameters have been properly optimized according to published research [33], stagnation and
premature convergence still occur in our application.

As the velocity update rule in the BA mainly influences its convergence speed, the dynamic inertia
weight is used to solve the stagnation problem. The velocity update rule is changed as follows:

vt
i = ωt

iv
t−1
i +

(
xt

i − x∗
)

fi (15)

where v, x, f, and ω denote velocity, location, velocity adjusting frequency, and the newly introduced
dynamic inertia weight, respectively, while i, t, and t-1 denote bat i, time step t, and its previous time
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step, respectively. x* denotes the optimal location in the current iteration. Considering that most
bats can find better locations during exploration, the dynamic inertia weight need not decrease a lot.
When most bats cannot find better locations, exploitation starts and a small dynamic inertia weight can
lead to fast convergence. Thus, a success rate of finding better locations is defined to automatically
adjust the dynamic inertia weight, which is formulated in Equations (16)–(18):

ωt
i = ωmin + (ωmax −ωmin)Pt

s (16)

Pt
s =

N∑
i=1

St
i

N
(17)

St
i =

 1 i f
(
Wt

i < Wt−1
i

)
0 else

(18)

where ωmax and ωmin are the maximum and the minimum of ω, respectively, and Ps
t is the success rate

at time step t. Si
t represents whether bat i finds a better location at time step t, and it is equal to 1 if a

better location is found.
As the BA’s premature convergence is mainly caused by lack of variation, differential evolution

(DE) is applied in the BA. Comparing different schemes of DE [34], DE/rand/1 was selected for its
ability to increase the diversity of bats and the simplicity. It is formulated in Equation (19) and added
in the step of location update during exploration:

xt+1
i = xt

i + F ·
(
x j − xk

)
(19)

where xj and xk are two other bats selected randomly, and F is chosen in [0,2].
DE/best/1 was also used in the BA and added in the step of location update during exploitation as

it can further increase the speed of convergence. The differential rule is defined as follows:

xt+1
i = x∗ + F ·

(
x j − xk

)
(20)

The crossover is applied between updated locations of the conventional BA and DE based on the
equations below:

xt+1
i (m) =

{
xt+1

i (m)DE rand ≥ Pc

xt+1
i (m)BA rand < Pc

(21)

where xi
t+1(m), xi

t+1(m)DE, and xi
t+1(m)BA are the No. m factor of crossover result, DE result, and BA

result, respectively, of bat i at time step t+1, and Pc is the probability of crossover chosen in [0,1].
According to the method above, the steps of the fusion BA designed to optimize the scale factors

of the fuzzy system online can be summarized as the pseudo code shown in Figure 8, where the steps
different from the conventional BA are in bold.
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4. Simulations and Results

In order to validate the effectiveness of the aforementioned methods, this paper designed two
kinds of simulations, which explored the path tracking performance of the robot using the new method
and the optimal location finding performance of the fusion BA.

In the first simulation, the proposed fuzzy controller with online optimization of the scale factors
using the fusion BA was applied to track a reference path with abrupt displacement, which imitates
the condition where an embossment of the biofouling boundary appears or disappears in the view of
the UPCR. As a contrast, the fuzzy controller without optimization was also simulated, and Kpos, Kori,
and Kt were set as 1000, 0.35, and 7, respectively. Figures 9 and 10 show the tracking performance of
these two fuzzy controllers when the velocity of the front wheel of the UPCR is 3.6 m/min.
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Figure 10. Tracking error of the UPCR using the two fuzzy controllers in the first simulation: (a) Position
error, (b) Orientation error.

As shown in Figure 9, both fuzzy controllers can successfully drive the UPCR to track the reference
path. When initial conditions for both controllers were the same in stages 1O and 2O, the UPCR with the
optimized fuzzy controller moved close to the reference path more quickly. As the reference path was
short in stage 3O, the UPCR with the conventional fuzzy controller did not have enough time to finish
adjusting. In stage 4O, although the initial deviation for the optimized fuzzy controller was bigger
than that for the conventional fuzzy controller, both fuzzy controllers spent almost the same time to
eliminate errors.

Figure 10a,b shows the position error and the orientation error with respect to time and mileage
along the x-axis, which represent the speed of the nozzle approaching the reference line and the UPCR
straightening its body along the reference line, respectively. From the result, it takes more than 10 s for
the UPCR to eliminate large position and orientation errors. This phenomenon is reasonable because
the robot has to move slowly to ensure that the sea creatures are fully cleaned and the drive motor
provides enough torque to overcome the resistance caused by magnetic adsorption. It should also
be noted that the maximum orientation error was bigger when the UPCR used the optimized fuzzy
controller, which is because the weight coefficient ω1 was set to be bigger than ω2 to decrease the
position error as a priority, and a faster change of position in the left–right direction of the UPCR
required a bigger orientation error. Despite all this, the correction of the orientation error was still
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faster using the optimized fuzzy controller, as shown in Figure 10b. In general, the proposed fuzzy
controller is suitable for the tracking path task and optimizing its scale factors online can dramatically
improve the performance.

In order to explore the sensitivity of the proposed controller to the moving speed of the UPCR,
we simulated its tracking performance at different speeds. Each simulation was performed under the
same setting (e.g., reference trajectory and dynamic parameters). Figure 11 shows the root mean square
error (RMSE) of the UPCR’s performance error at seven different moving speeds. From the result,
the RMSE of the position error increases with UPCR’s speed, whereas the RMSE of the orientation error
has no obvious relationship with the robot’s speed. This result indicates that, within a certain velocity
range, the tracking performance of the UPCR is inversely related to its moving speed. However,
the RMSE of the tracking performance did not change significantly within such a large velocity range.
Considering that the velocity of the robot in most applications is between 1.8 and 3.6 m/s, it can be
concluded that the fusion bat algorithm-optimized fuzzy controller is suitable for the UPCR.
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To verify the superiority of the fusion BA, a second simulation was conducted to compare
the performance of the fusion BA (FBA), the BA with only the dynamic inertia weight (DIWBA),
the conventional BA, and the PSO. The initial conditions for each method were the same, and the
simulation was repeated 100 times. According to the results shown in Figure 12, the proposed fusion
BA converges to the optimal solution with a faster convergence speed and a better fitness value,
which guarantees better real-time performance of the control system.
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5. Experiment and Results

The vision-based optimized fuzzy control method was applied to drive the UPCR following the
boundary of an area covered by biofouling, which were simulated by shells and paint on a pipe in the
laboratory. The localization algorithm and the control algorithm were run in the computer and their
processing times were about 41 ms and 60 ms, respectively. In order to decrease the influence of the
time delay of communication, the control time step was chosen as 0.3 s and the velocity of the front
wheel was set as 1.8 m/min.

Figure 13 shows the UPCR’s movement during the experiment. The upper parts of the subgraphs
are the images captured by the catadioptric panoramic imaging system and the lower parts indicate
the localization results that point to the biofouling boundary on the pipe, presented on the plane
by surface flattening. The tracking errors and the UPCR’s turning angle during the experiment are
shown in Figure 14. It can be seen that the UPCR moved forward as the boundary was almost flat
(Figure 13a,b), and the position error and the orientation error were no more than 0.01 m and 2◦,
respectively. When the UPCR detected the embossment of the boundary at moment A, the reference
path changed and a big position error occurred (Figure 13c). Then, the UPCR automatically tracked the
new reference path to avoid crashing, as we expected (Figure 13d–f). Due to the selection strategy of the
feature point, the reference path can be generated correctly under most circumstances, even though part
of the biofouling was not recognized. According to Figure 14, the changing trend of the tracking error
was similar to the simulation results in Section 4 where the position error was preferentially corrected.
The setting time was a little longer than that in the simulations as there were some measurement
mistakes in the position error. The experimental results indicate the rationality and validity of the
control method presented above.
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6. Conclusions

This paper describes a new BA online optimized fuzzy control method for a UPCR based on
vision localization. Constraints of the working environment were analyzed, and a localization system
composed of global localization and local localization and a fuzzy controller with fusion BA were
proposed. The local localization was achieved based on images from a catadioptric panoramic imaging
system. The features of the pipe edge and the boundary of the area covered by biofouling were obtained
by image processing and feature extraction, and then the reference path was generated based on the
coordinates of the feature point that was calculated by projection transformation. The fuzzy controller
was designed to make the UPCR track the reference path, and an improved BA with dynamic inertia
weight and differential evolution method was developed to optimize the scale factors of the fuzzy
controller online. Simulations and experiments were performed to demonstrate the validity of the
proposed method.

As the operational condition of the UPCR (i.e., the irregular offshore structure covered by
biofouling) is more complex and varied, future works will focus on improving the robustness and
accuracy of vision localization in order to conduct field applications in the sea.
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